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Abstract. This paper presents a method of constructing the exact solution of the ring-plate problem. The method
is based on the general solution formula (nonseries form) of the biharmonic equation. The method changes solv-
ing the boundary-value problems of the ring plate into solving three functional equations and computing the
coefficients of a simple Fourier series, or only solving four functional equations. The method is believed to be
new. The simpler formulas of the solutions of all cases of the ring-plate boundary-value problems without any
free boundary are obtained. Several examples are given.
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1. Introduction

The lateral deflection in ring-plate problems, which are of engineering importance, is described
by the single equilibrium equation [1–2]:

�4w= q(r, θ)

D
=p(r, θ), (1)

where �2 is the Laplace operator expressed in polar coordinates (r, θ), q(r, θ) is a continu-
ously distributed lateral load, and D is the constant flexural rigidity.

Many techniques exist for solving the ring-plate bending problem. These techniques range
from fortuitous exact solutions that are obtained by separation of variables, via numerical
approximations such as finite-element and finite-difference approaches, to the various approx-
imate energy methods such as Rayleigh-Ritz and Galerkin ([1, pp. 282–312], [2, pp. 313–328]).

How to construct exact solutions of bending problems involving a ring and plate under
various loading and boundary conditions has been discussed by numerous authors ([2,
pp. 313–328], [3, pp. 367–394], [4, pp. 746–785], [5–9]). The finite-form exact solutions of
the symmetrical bending cases are given in [5–9]. For the general case, the classical Fourier-
series method allows us to find its solution [4, pp. 746–785], [5]. By the classical Fourier-series
method, the general solution of (1) can be expressed as (see [4, pp. 746–785], [5])

w(r, θ)=w0(r, θ)+ c01r
2 + c02r

2 log r+ c03 + c04 log r

+(c11r
3 + c12r

−1 + c13r+ c14r log r) cos θ

+(d11r
3 +d12r

−1 +d13r+d14r log r) sin θ

+
∞∑

n=2

(cn1r
n+2 + cn2r

n+ cn3r
−n+2 + cn4r

−n) cosnθ

+
∞∑

n=2

(dn1r
n+2 +dn2r

n+dn3r
−n+2 +dn4r

−n) sinnθ,
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where w0(r, θ) is a special solution of (1). It is well known that, for a ring-plate problem,
the above solution must satisfy four boundary conditions, and by these conditions, eight lin-
ear algebraic equations for the coefficients cnj and dnj (j =1, 2, 3, 4) are obtained. However,
it is extremely difficult to solve these algebraic equations and the obtained formulae of the
coefficients cnj and dnj (j =1, 2, 3, 4) are very complex. The question arises whether or not
there exists a simple method for constructing the exact solution of the ring-plate problem. The
purpose of this paper is to present a simple method for solving the ring-plate problem. The
method is based on the general solution of (1), which is given by (see [10–11])

w(r, θ)=w0(r, θ)+ r2[f1(re
iθ )+g1(re

−iθ )]+ϕ1(re
iθ )+ψ1(re

−iθ ), (2)

where w0(r, θ) is a special solution of Equation (1) and f1, g1, ϕ1 and ψ1 are four arbitrary
functions. Let z= reiθ , z̄= re−iθ , f2(z)= zf1(z) and g2(z)= zg1(z), so that

w(r, θ)=w0 + z̄f2(z)+ zg2(z̄)+ϕ1(z)+ψ1(z̄).

If we take g2(z̄)=f2(z) and ψ1(z̄)=ϕ1(z), the above equation becomes

w(r, θ)=w0 + z̄f2(z)+ zf2(z)+ϕ1(z)+ϕ1(z),

which is the standard Muskhelishvili representation [12].
The method presented in this paper can be briefly described as follows. First, substituting

f1(z)=f (log z
a
), g1(z)=g(log z

a
), ϕ1(z)=ϕ(log z

a
) and ψ1(z)=ψ(log z

a
) in (2) yields

w(r, θ)=w0(r, θ)+ r2
[
f
(

log
r

a
+ iθ

)
+g

(
log

r

a
− iθ

)]

+ϕ
(

log
r

a
+ iθ

)
+ψ

(
log

r

a
− iθ

)
, (3)

where f, g,ϕ and ψ are single-valued functions of θ . Second, by (3), the solution of the ring-
plate boundary-value problem is represented in terms of four arbitrary functions that reduce
to a single such function upon satisfaction of three boundary conditions. Finally, in order to
satisfy the fourth boundary condition, the single arbitrary function is decomposed into a Fou-
rier series. The method is different from the power-series method described in [13]. The author
has tried to construct exact solutions of ring-plate problems by the Muskhelishvili representa-
tion [12] and find a generalized formulation of the boundary conditions similar to that posed
by Tseng and Stippes [13]; however, these attempts have remained unsuccessful, since there
are only two arbitrary functions in the Muskhelishvili representation and the boundary con-
ditions considered in this paper are nonvanishing.

2. At least one built-in boundary and no free boundaries

In this section, we show how to construct exact solutions of ring-plate boundary-value prob-
lems with at least one built-in boundary and no free boundaries by the method described in
the article. The boundary conditions considered here are nonvanishing, which is interesting in
engineering and mathematics.

In what follows Re[F(r, θ)] means the real part of the complex function F(r, θ). We shall
prove a lemma first.
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Lemma 1. If w0(r, θ) is a special real solution of Equation (1), then the following function

w(r, θ)=w2(r, θ)+ r2 −a2

b2 −a2

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+a
2(r2 −b2)

(b2 −a2)2

[
n
(

log
r

b
+ iθ

)
+n

(
− log

r

b
+ iθ

)]

−a
2(r2 −b2)

(b2 −a2)2

[
n

(
log

br

a2
+ iθ

)
+n

(
− log

br

a2
+ iθ

)]
(4)

is a solution of (1) satisfying the following boundary conditions

w(a, θ)=S0(θ)
∂w

∂r
(a, θ)=α0(θ) w(b, θ)= S̄0(θ), (5)

where n(z) is an arbitrary function, and

w2(r, θ)=w1(r, θ)+ r2 −b2

a2 −b2
Re

[∫ log r
a
+iθ

− log r
a
+iθ

α(−iv)dv

]

w1(r, θ)=w0(r, θ)+ r2 −b2

b2 −a2
Re
[
w0

(
a, θ − i log

r

a

)
−S0

(
θ − i log

r

a

)]

+ r
2 −a2

a2 −b2
Re
[
w0

(
b, θ − i log

r

b

)
− S̄0

(
θ − i log

r

b

)]

α(θ)= a

2

[
α0(θ)− ∂w1

∂r
(a, θ)

]

Proof. First step. To make the solution (3) satisfy the boundary condition w(a, θ)=S0(θ), we
must put

a2[f (iθ)+g(−iθ)]+ϕ(iθ)+ψ(−iθ)=S0(θ)−w0(a, θ)=S(θ). (6)

Letting

a2f (iθ)+ϕ(iθ)=S(θ)+h(iθ), (7)

where h(z) is an arbitrary function, by (6) and (7), we have

a2g(−iθ)+ψ(−iθ)=−h(iθ). (8)

The substitution θ =−iz transforms (7) into

a2f (z)+ϕ(z)=S(−iz)+h(z). (9)

Similarly, substituting θ = iz in (8) yields

a2g(z)+ψ(z)=−h(−iz). (10)

By (9) and (10), we find
{
ϕ(z) = −a2f (z)+h(z)+S(−iz),
ψ(z) = −a2g(z)−h(−iz).

(11)
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Substituting (11) in (3) yields

w(r, θ)=w̄1(r, θ)+
(
r2 −a2

)[
f
(

log
r

a
+ iθ

)
+g

(
log

r

a
− iθ

)]

+h
(

log
r

a
+ iθ

)
−h

(
− log

r

a
+ iθ

)
, (12)

where

w̄1(r, θ)=w0(r, θ)−w0

(
a, θ − i log

r

a

)
+S0

(
θ − i log

r

a

)
.

Second step 2. Similar to step 1, if we let the solution (12) satisfy the boundary condition
w(b, θ)= S̄0(θ), we get

(b2−a2)

[
f

(
log

b

a
+iθ
)

+g
(

log
b

a
−iθ
)]

+h
(

log
b

a
+ iθ

)
−h

(
− log

b

a
+ iθ

)
= S̄(θ), (13)

where S̄(θ)= S̄0(θ)− w̄1(b, θ). Letting

(b2 −a2)f

(
log

b

a
+ iθ

)
+h

(
log

b

a
+ iθ

)
= S̄(θ)+k(iθ), (14)

where k(z) is an arbitrary function, by (13) and (14), we obtain

(b2 −a2)g

(
log

b

a
− iθ

)
−h

(
− log

b

a
+ iθ

)
=−k(−iθ). (15)

Equations (14) and (15) imply that

f (z)= 1
b2 −a2

{
−h(z)+k

(
z− log

b

a

)
+ S̄

[
−i
(
z− log

b

a

)]}
,

g(z)= 1
b2 −a2

[
h(−z)−k(−z+ log

b

a
)

]
. (16)

Substituting (16) in (12), we have

w(r, θ)= w̄1(r, θ)+ r2 −a2

b2 −a2
S̄
(
θ − i log

r

b

)
+ r2 −b2

a2 −b2

[
h
(

log
r

a
+ iθ

)
−h(− log

r

a
+ iθ)

]

+ r
2 −a2

b2 −a2

[
k
(

log
r

a
+ iθ

)
−k
(
− log

r

a
+ iθ

)]
. (17)

A straightforward computation shows that

w̄2(r, θ)= w̄1(r, θ)+ r2 −a2

b2 −a2
S̄
(
θ − i log

r

b

)

=w0(r, θ)+ r2 −b2

b2 −a2

[
w0

(
a, θ − i log

r

a

)
−S0

(
θ − i log

r

a

)]

+ r
2 −a2

a2 −b2

[
w0

(
b, θ − i log

r

b

)
− S̄0

(
θ − i log

r

b

)]
.

Noting that if w(r, θ)=W1(r, θ)+ iW2(r, θ), where W1(r, θ) and W2(r, θ) are two real functions,
is a solution of (1) satisfying the boundary conditions w(a, θ)=S0(θ) and w(b, θ)= S̄0(θ), we
have that W1(r, θ) is also a solution of (1) satisfying the two conditions. Thus, if we denote
w1(r, θ)=Re[w̄2(r, θ)], then the following function

w(r, θ)=w1(r, θ)+ r2 −b2

a2 −b2

[
h
(

log
r

a
+ iθ

)
−h

(
− log

r

a
+ iθ

)]

+ r
2 −a2

b2 −a2

[
k
(

log
r

b
+ iθ

)
−k
(
− log

r

b
+ iθ

)]
, (18)

is a solution of (1) satisfying the boundary conditions w(a, θ)=S0(θ) and w(b, θ)= S̄0(θ).



Construction of the solution of ring-plate problem 39

Final step. Using (18), we compute

∂w

∂r
= ∂w1

∂r
+ 2r
a2 −b2

[
h
(

log
r

a
+ iθ

)
−h

(
− log

r

a
+ iθ

)]

+ r2 −b2

(a2 −b2)r

[
h′
(

log
r

a
+ iθ

)
+h′

(
− log

r

a
+ iθ

)]

+ 2r
b2 −a2

[
k
(

log
r

b
+ iθ

)
−k
(
− log

r

b
+ iθ

)]

+ r2 −a2

(b2 −a2)r

[
k′
(

log
r

b
+ iθ

)
+k′

(
− log

r

b
+ iθ

)]
.

To make the solution (18) satisfy the boundary condition ∂w
∂r

|r=a =α0(θ), by the above equa-
tion, we must put

2
a
h′ (iθ)+ 2a

b2 −a2

[
k
(

log
a

b
+ iθ

)
−k
(
− log

a

b
+ iθ

)]
=α0(θ)− ∂w1

∂r
(b, θ),

which implies

h′(iθ)= a2

a2 −b2

[
k
(

log
a

b
+ iθ

)
−k
(
− log

a

b
+ iθ

)]
+α(θ), (19)

where α(θ)= a
2 [α0(θ)− ∂w1

∂r
(b, θ)]. Substituting θ =−iz in (19) yields

h′(z)= a2

a2 −b2

[
k
(

log
a

b
+ z
)

−k
(
− log

a

b
+ z
)]

+α(−iz). (20)

Denoting k(z)=n′(z), (20) becomes

h′(z)= a2

a2 −b2

[
n′
(

log
a

b
+ z
)

−n′
(
− log

a

b
+ z
)]

+α(−iz).

After integration we obtain

h(z)= a2

a2 −b2

[
n
(

log
a

b
+ z
)

−n
(
− log

a

b
+ z
)]

+
∫ z

α(−iv)dv. (21)

Substituting k(z)=n′(z) and (21) in (18) and simplifying yields

w(r, θ)=w1(r, θ)+ r2 −b2

a2 −b2

∫ log r
a
+iθ

− log r
a
+iθ

α(−iv)dv

+ r
2 −a2

b2 −a2

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+a
2(r2 −b2)

(b2 −a2)2

[
n
(

log
r

b
+ iθ

)
+n

(
− log

r

b
+ iθ

)]

−a
2(r2 −b2)

(b2 −a2)2

[
n

(
log

br

a2
+ iθ

)
+n

(
− logn

br

a2
+ iθ

)]
,

which implies that the following function

w(r, θ)=w2(r, θ)+ r2 −a2

b2 −a2

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+a
2(r2 −b2)

(b2 −a2)2

[
n
(

log
r

b
+ iθ

)
+n

(
− log

r

b
+ iθ

)]

−a
2(r2 −b2)

(b2 −a2)2

[
n

(
log

br

a2
+ iθ

)
+n

(
− log

br

a2
+ iθ

)]
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is a solution of Equation (1) that satisfies the boundary conditions (5), where

w2(r, θ)=w1(r, θ)+ r2 −b2

a2 −b2
Re

[∫ log r
a
+iθ

− log r
a
+iθ

α(−iv)dv

]
.

This completes the proof of Lemma 1.
From steps 1–3 we can see that multi-variable functional equations can be solved easily. It

seems not to be hard to construct the solution of the ring-plate problem by Lemma 1. Unfor-
tunately, it is very difficult to solve the single-variable functional equation. For example, if we
let (4) satisfy the boundary condition ∂w

∂r
(b, θ)= ᾱ0(θ), we have

a2b2

(a2 −b2)2

[
2n(iθ)−n

(
2 log

b

a
+ iθ

)
−n

(
−2 log

b

a
+ iθ

)]
+n′′(iθ)= ᾱ(θ), (22)

where ᾱ(θ)= b
2 [ᾱ0(θ)− ∂w2

∂r
(b, θ)]. Except for some simple cases, the author did not find the

solution of (22).
To construct solutions of the ring-plate problem with at least a single built-in boundary

and without a free boundary, we combine Lemma 1 with a Fourier-series method. Substitut-
ing n(z)=∑∞

n=−∞ anenz in (4) and simplifying yields

w(r, θ)=w2(r, θ)+
∞∑

n=−∞
ϕn(r)aneinθ , (23)

where

ϕn(r)=n(r
2 −a2)

b2 −a2

[( r
b

)n−
(
b

r

)n]
+a

2(r2 −b2)

(b2 −a2)2

[( r
b

)n+
(
b

r

)n
−
(
br

a2

)n
−
(
a2

br

)n]
. (24)

We may easily verify that

ϕ−1(r) =ϕ0(r)=ϕ1(r)=0 ϕn(a)=ϕn(b)=ϕ′
n(a)=0,

ϕ−n(r) =ϕn(r) ϕ′
n(b)= 2

b

{
n2 + a2b2

(b2−a2)2

[
2− ( b

a
)2n− ( a

b
)2n
]}
,

ϕ′′
n(b) = 2(a2+3b2)n2

b2(b2−a2)
+ 2a2

(b2−a2)2

[
2+ (2n−1)( a

b
)2n− (2n+1)( b

a
)2n
]
.

(25)

By use of (25), (23) can be written as

w(r, θ)=w2(r, θ)+
∞∑

n=2

ϕn(r)(aneinθ +a−ne−inθ )

=w2(r, θ)+
∞∑

n=2

ϕn(r)(An cosnθ +Bn sinnθ), (26)

where An=an+a−n and Bn= i(an−a−n).
Obviously, (26) can not be used to construct the solution of the ring-plate problem with

a built-in boundary and no free boundary. To do this, we must add two terms in (26). From
steps 1–3, we can see that the latter part in (4), viz.

wh(r, θ)= r2 −a2

b2 −a2

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+a
2(r2 −b2)

(b2 −a2)2

[
n
(

log
r

b
+ iθ

)
+n

(
− log

r

b
+ iθ

)]

−a
2(r2 −b2)

(b2 −a2)2

[
n

(
log

br

a2
+ iθ

)
+n

(
− log

br

a2
+ iθ

)]
, (27)
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is a solution of the homogeneous equation �4w=0 of Equation (1) satisfying the boundary-
value conditions wh(a, θ)=0, ∂wh

∂r
(a, θ)=0 and wh(b, θ)=0.

Substituting n(z)= 1
4 (b

2 −a2)z2 in (27) yields

wh0 (r, θ)= ϕ̄0(r)= (b2 −a2)(r2 −a2) log
r

b
+2a2(r2 −b2) log

a

b
log

r

a

which implies that

w00(r, θ)=A0ϕ̄0(r) (28)

is a solution of the homogeneous equation �4w=0 of Equation (1) satisfying the boundary
conditions w00(a, θ)=0, ∂w00

∂r
(a, θ)=0 and w00(b, θ)=0, where A0 is an arbitrary constant. It

is not hard to show the following:

ϕ̄0(a)= ϕ̄′
0(a)= ϕ̄0(b)=0,

ϕ̄′
0(b)=

1
b

[
(b2 −a2)2 −4a2b2 log2 b

a

]
, (29)

ϕ̄′′
0 (b)=

1
b2

[
3b4 +2a2b2 −a4 −4a2b2

(
1+ log

b

a

)2
]
.

Similarly, substituting n(z)=−b(b2 −a2)2zez in (27), we obtain

wh1 (r, θ)= ϕ̄1(r)e
iθ (30)

and substituting n(z)=−b(b2 −a2)2z̄ez̄ in (27), we have

wh2 (r, θ)= ϕ̄1(r)e
−iθ , (31)

where

ϕ̄1(r)= 1
r

(
a2 −b2 +2b2 log

b

a

)
(r2 −a2)2 − 1

r
(b2 −a2)2

(
a2 − r2 +2r2 log

r

a

)
.

Equations (30) and (31) imply that

w01(r, θ)= ϕ̄1(r)(A1 cos θ +B1 sin θ) (32)

is a solution of the homogeneous equation �4w=0 of Equation (1) satisfying the boundary
conditions w01(a, θ)= 0, ∂w01

∂r
(a, θ)= 0 and w01(b, θ)= 0, where A1 and B1 are two arbitrary

constants. It is not hard to show that

ϕ̄1(a)= ϕ̄′
1(a)= ϕ̄1(b)=0,

ϕ̄′
1(b)=4

[
(b4 −a4) log

b

a
− (b2 −a2)2

]
, (33)

ϕ̄′′
1 (b)=

4
b

[
(3b4 +a4) log

b

a
−2b2(b2 −a2)

]
.

By the principle of superposition, Equations (26), (28) and (32) imply that

w(r, θ)=w2(r, θ)+A0ϕ̄0(r)+ ϕ̄1(r)(A1 cos θ +B1 sin θ)

+
∞∑

n=2

ϕn(r)(An cosnθ +Bn sinnθ) (34)

is a solution of (1) satisfying the boundary conditions (5).
Next, we use (34) to construct the solutions of ring-plate problems with built-in bound-

aries and no free boundary. The solutions are given in the following two Theorems.



42 P. Gao

Theorem 1. (Two built-in boundaries) The solution of the following ring-plate problem

�4w=p(r, θ) w(a, θ)=S0(θ)
∂w

∂r
(a, θ)=α0(θ),

w(b, θ)= S̄0(θ)
∂w

∂r
(b, θ)= ᾱ0(θ) (35)

is given by

w(r, θ)=w2(r, θ)+A0ϕ̄0(r)+ ϕ̄1(r)(A1 cos θ +B1 sin θ)

+
∞∑

n=2

ϕn(r)(An cosnθ +Bn sinnθ),

where

A0 = 1
2πϕ̄′

0(b)

∫ 2π

0
ᾱ(θ)dθ, A1 = 1

πϕ̄′
1(b)

∫ 2π

0
ᾱ(θ) cos θdθ,

B1 = 1
πϕ̄′

1(b)

∫ 2π

0
ᾱ(θ) sin θdθ, An= 1

πϕ′
n(b)

∫ 2π

0
ᾱ(θ) cosnθdθ,

Bn= 1
πϕ′

n(b)

∫ 2π

0
ᾱ(θ) sinnθdθ, ᾱ(θ)= ᾱ0(θ)− ∂w2

∂r
(b, θ).

By (34) and the boundary condition ∂w
∂r
(b, θ)= ᾱ0(θ), we have

A0ϕ̄
′
0(b)+ ϕ̄′

1(b)(A1 cos θ +B1 sin θ)+
∞∑

n=2

ϕ′
n(b)(An cosnθ +Bn sinnθ)= ᾱ(θ),

which implies the Theorem.

Similarly, we have the following Theorem.

Theorem 2. (The boundary r=a is built-in, the boundary r=b is simply supported). The solu-
tion of the following ring-plate problem

�4w=p(r, θ), w(a, θ)=S0(θ),
∂w

∂r
(a, θ)=α0(θ),

(36)

w(b, θ)= S̄0(θ),

[
∂2w

∂r2
+µ

(
1
r

∂w

∂r
+ 1
r2

∂2w

∂θ2

)]∣∣∣∣∣
r=b

=M0(θ)

is given by

w(r, θ)=w2(r, θ)+A0ϕ̄0(r)+ ϕ̄1(r)(A1 cos θ +B1 sin θ)

+
∞∑

n=2

ϕn(r)(An cosnθ +Bn sinnθ),

where

A0 = b

2π [bϕ̄′′
0 (b)+µϕ̄′

0(b)]

∫ 2π

0
M(θ)dθ, A1 = b

π [bϕ̄′′
1 (b)+µϕ̄′

1(b)]

∫ 2π

0
M(θ) cos θdθ,

B1 = b

π [bϕ̄′′
1 (b)+µϕ̄′

1(b)]

∫ 2π

0
M(θ) sin θdθ,An= b

π [bϕ′′
n(b)+µϕ′

n(b)]

∫ 2π

0
M(θ) cosnθdθ,

Bn= b

π [bϕ′′
n(b)+µϕ′

n(b)]

∫ 2π

0
M(θ) sinnθdθ, M(θ)=M0(θ)−

[
∂2w2

∂r2
+µ
(

1
r

∂w2

∂r
+ 1
r2

∂2w2

∂θ2

]∣∣∣∣
r=b
.

Next, three examples are given.
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2.1. Example 1

Consider the bending of a uniformly loaded ring-plate built-in around the curve edge r =
a, and bending moments m(�= 0) acting around the curve edge r = b. In this case, we have
q(r, θ)=q0, S0(θ)= S̄0(θ)=α0(θ)=0, and M0(θ)=m.

It is not hard to verify that w0(r, θ)=Ar4(where A= q0
64D ) is a special solution of Equation

(1). By Lemma 1, we have

w1(r, θ)=w0(r, θ)+ r2 −b2

b2 −a2
Re
[
w0

(
a, θ − i log

r

a

)]
+ r2 −a2

a2 −b2
Re
[
w0

(
b, θ − i log

r

b

)]

=A(r2 −a2)(r2 −b2).

Noting α(θ)= a
2

[
α0(θ)− ∂w1

∂r
(a, θ)

]
=Aa2(b2 −a2), again by Lemma 1, we get

w2(r, θ)=w1(r, θ)+ r2 −b2

a2 −b2
Re

[∫ log r
a
+iθ

− log r
a
+iθ

Aa2(b2 −a2)dv

]

=A(r2 −b2)
(
r2 −a2 −2a2 log

r

a

)
.

A straightforward computation shows that

M(θ)=M0(θ)−
[
∂2w2

∂r2
+µ

(
1
r

∂w2

∂r
+ 1
r2

∂2w2

∂θ2

)]∣∣∣∣∣
r=b

=m−2A
[
(1+µ)

(
b2 −a2 −2a2 log

b

a

)
+4
(
b2 −a2

)]
.

Using Theorem 2, we have

A0 = m−2Ab
[
(1+µ) (b2 −a2 −2a2 log b

a

)+4
(
b2 −a2

)]

bϕ̄′′
0 (b)+µϕ̄′

0(b)
,

An=Bn=0(n≥1).

Theorem 2 implies that the solution of the boundary-value problem is given by

w(r, θ)=A(r2 −b2)
(
r2 −a2 −2a2 log

r

a

)
+A0ϕ̄0(r).

A straightforward computation shows that the bending moment acting around the curve edge
r = a is 4

[
A(a2 −b2)+A0

(
b2 −a2 +b2 log a

b

)]
. The greatest deflection is attained on the cir-

cumference r= r0(b≤ r0 ≤a), where r0 is a solution of the following hyperequation

∂w

∂r
=A

[
2r
(

2r2 −a2 −b2 −2a2 log
r

a

)
− a2(r2 −b2)

r

]
+A0ϕ̄

′
0(r)=0,

which can not be solved algebraically.
It is not hard to verify that, if the inner radius b reduces to zero, the solution becomes

w(r, θ)=Ar2
(
r2 −a2 −2a2 log

r

a

)
,

which is different from the solution w(r, θ)=A(r2 −a2)2 of the circular-plate problem of uni-
formly loaded plate, built-in around the curve edge r=a (see [10]).
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2.2. Example 2

Consider the bending of a ring-shaped plate of linear varying loading, built-in around the
curved edge r=a, and bending moments m(�=0) acting around the curved edge r=b.

In this case, we have q(r, θ)= q1
a
r cos θ, S0(θ)= S̄0(θ)=α0(θ)= 0, and M0(θ)=m. It is not

hard to show that the function w0(r, θ)=Br5 cos θ — where B= q1
192aD — is a special solution

of (1).
Similar to the Example 1, we have

w1(r, θ)=Br5 cos θ + r2 −b2

b2 −a2
Re
[
Ba5 cos

(
θ − i log

r

a

)]

+ r
2 −a2

a2 −b2
Re
[
Bb5 cos

(
θ − i log

r

b

)]
.

Noting cos(θ − i log r
a
)= 1

2 (e
log r

a
+iθ + e− log r

a
−iθ )= 1

2 (
r
a

+ a
r
) cos θ + i

2 (
r
a

− a
r
) sin θ , we have

w1(r, θ)= B

2r
(r2 −a2)(r2 −b2)(2r2 +a2 +b2) cos θ.

Since α(θ)= B
2 a(b

2 −a2)(3a2 +b2) cos θ , we have

w2(r, θ)=w1(r, θ)+ r2 −b2

a2 −b2
Re

[∫ log r
a
+iθ

− log r
a
+iθ

B

2
a(b2 −a2)(3a2 +b2) cos(−iv)dv

]

= B

2r
(r2 −a2)(r2 −b2)(2r2 +a2 +b2) cos θ

+ r
2 −b2

a2 −b2

B

2
a(b2 −a2)(3a2 +b2)

( r
a

− a

r

)
cos θ

= B

r
(r2 −a2)2(r2 −b2) cos θ.

A straightforward computation shows that

M(θ)=M0(θ)−
[
∂2w2

∂r2
+µ

(
1
r

∂w2

∂r
+ 1
r2

∂2w2

∂θ2

)]∣∣∣∣∣
r=b

=m− 2B(b2 −a2)

b
[(7+µ)b2 + (1−µ)a2] cos θ

Using Theorem 2, we have B1 =0, An=Bn=0(n≥2), and

A0 = mb

bϕ̄′′
1 (b)+µϕ̄′

1(b)

and

A1 =−2B(b2 −a2)[(7+µ)b2 + (1−µ)a2]
bϕ̄′′

1 (b)+µϕ̄′
1(b)

.

Theorem 2 implies that the solution of the boundary-value problem is given by

w(r, θ)=A0ϕ̄0(r)+
[
B

r
(r2 −a2)2(r2 −b2)+A1ϕ̄1(r)

]
cos θ.
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By the above solution, the greatest value of the deflection always occurs on the line x=0(θ=0
or θ=π ), and a straightforward computation shows that the bending moments acting around
the curve edge r=a is

[
∂2w2

∂r2
+µ

(
1
r

∂w2

∂r
+ 1
r2

∂2w2

∂θ2

)]∣∣∣∣
r=a

=4A0

[
b2 −a2 + (a2 +b2) log

a

b

]

+4
[
2Ba(a2−b2)+A1

a

(
a4−b4+4a2b2 log

b

a

)]
cos θ,

which implies that the largest bending moment around the curve edge r=a is 4|A0[b2 −a2 +
(a2 +b2) log a

b
]|+4|[2Ba(a2 −b2)+ A1

a
(a4 −b4 +4a2b2 log b

a
]|, and occurs at the point (a,0) or

(a,π).
It is clear that, if the inner radius b reduces to zero, the solution becomes

w(r, θ)=Br(r2 −a2)2 cos θ,

which is the same as the solution of the circular-plate problem with linear varying loading,
built-in around the curve edge r=a (see [10]).

2.3. Example 3

Consider the bending of a ring-plate with the load sin 1
2θ , built-in around two curved edges.

In this case, we have q(r, θ)= sin 1
2θ, S0(θ)= S̄0(θ)=α0(θ)= ᾱ0(θ)=0, and it is not hard to see

that the function w0(r, θ)=p0r
4 sin 1

2θ — where p0 = 16
945D — is a special solution of (1). By

Lemma 1, we have

w1(r, θ)=p0r
4 sin

1
2
θ + r2 −b2

b2 −a2
Re

[
p0a

4 sin
1
2

(
θ − i log

r

a

)]

+ r
2 −a2

a2 −b2
Re

[
p0b

4 sin
1
2

(
θ − i log

r

b

)]
=p0ϕ(r) sin

1
2
θ,

where

ϕ(r)= r4 + a4(r2 −b2)

2(b2 −a2)

(√
r

a
+
√
a

r

)
+ b4(r2 −a2)

2(a2 −b2)

(√
r

b
+
√
b

r

)
.

Since α(θ)=−p0a
2 ϕ′(a) sin 1

2θ , we get

w2(r, θ)=w1(r, θ)− aϕ′(a)(r2 −b2)

2(a2 −b2)
Re

[∫ log r
a
+iθ

− log r
a
+iθ

sin
(

− i
2
v

)
dv

]

=ψ(r) sin
1
2
θ,

where ψ(r)=p0

[
ϕ(r)+ aϕ′(a)(r2−b2)

a2−b2

(√
r
a

−
√
a
r

)]
. By the above equation, we have

ᾱ(θ)=−p0b

2

[
ϕ′(b)− 2

√
ab

a+b ϕ
′(a)

]
sin

1
2
θ =K0 sin

1
2
θ.

Using Theorem 1, the solution of the problem can be expressed as

w(r, θ)=w2(r, θ)+ 4K0

π

[
ϕ̄0(r)

2ϕ̄′
0(b)

− ϕ̄1(r) cos θ
3ϕ̄′

1(b)
+

∞∑

n=2

ϕn(r) cosnθ
(1−4n2)ϕ′

n(b)

]
.
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Next, we use Lemma 1 directly to construct the solution of this boundary-value problem. In
the example, the functional Equation (22) becomes

n′′(iθ)+ a2b2

(a2 −b2)2

[
2n(iθ)−n

(
2 log

b

a
+ iθ

)
−n

(
−2 log

b

a
+ iθ

)]

=−b
2

[
ϕ′(b)+ 2

√
ab

a+b ϕ
′(a)

]
sin

1
2
θ. (37)

Substituting n(z)= δ0 sin 1
2iz in (37) and simplifying yields

δ0

{
1
4

+ a2b2

(a2 −b2)2

[
2−
(
b

a
+ b

a

)]}
sin

1
2
θ =−b

2

[
ϕ′(b)+ 2

√
ab

a+b ϕ
′(a)

]
sin

1
2
θ,

which implies δ0 =− 2b(a+b)2
(a−b)2

[
ϕ′(b)+ 2

√
ab

a+b ϕ
′(a)
]
. Substituting n(z)= δ0 sin 1

2iz in (4) and sim-
plifying yields

w(r, θ)=w2(r, θ)+ δ0(r
2 −a2)

2(b2 −a2)

(√
r

b
−
√
b

r

)
sin

1
2
θ

+δ0a
2(r2 −b2)

(a2 −b2)2




√
r

b
+
√
b

r
−
√
br

a2
−
√
a2

br



 sin
1
2
θ.

Indeed, a straightforward computation shows that the above function is the solution of the
ring-plate problem. The solution is simpler than that of the Fourier-series form.

3. Two boundaries are simply supported

In this section we shall derive the formula of the solution of the ring-plate boundary-value
problem with two simply supported boundaries. Similar to Section 2, we need the following
Lemma.

Lemma 2. If w0(r, θ) is a special real solution of Equation (1), then the following function

w(r, θ)=w2(r, θ)+ r2 −a2

b2 −a2

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+2a2(r2 −b2)

�(a2 −b2)

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+2a2(r2 −b2)

�(a2 −b2)

[
n′
(

log
br

a2
+ iθ

)
−n′

(
− log

br

a2
+ iθ

)]

+ (1+µ)a2(r2 −b2)

�(a2 −b2)

[
n
(

log
r

b
+ iθ

)
+n
(

− log
r

b
+ iθ

)]

− (1+µ)a2(r2 −b2)

�(a2 −b2)

[
n
(

log
br

a2
+ iθ

)
+n
(

− log
br

a2
+ iθ

)]
(38)

is a solution of (1) satisfying the following boundary conditions

w(a, θ)=S0(θ) w(b, θ)= S̄0(θ),
(39)[

∂2w

∂r2
+ µ

(
1
r

∂w

∂r
+ 1
r2

∂2w

∂θ2

)]∣∣∣∣∣
r=a

=M0(θ),
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where n(z) is an arbitrary function, and

w2(r, θ)=w1(r, θ)+ a2(r2 −b2)

2�
Re

[∫ log r
a
+iθ

− log r
a
+iθ

M(−iv)dv

]

M(θ)=M0(θ)−
[
∂2w1

∂r2
+µ

(
1
r

∂w1

∂r
+ 1
r2

∂2w1

∂θ2

)]∣∣∣∣
r=a

�= (1+µ)a2 + (1−µ)b2

and w1(r, θ) is given in Lemma 1.
Using (18) and the boundary condition

[
∂2w
∂r2 +µ

(
1
r
∂w
∂r

+ 1
r2
∂2w
∂θ2

)] ∣∣∣
r=a

=M0(θ), a straight-
forward computation shows that

h′(iθ)= (1+µ)a2

�

[
k
(

log
a

b
+ iθ

)
−k
(
− log

a

b
+ iθ

)]

+2a2

�

[
k′
(

log
a

b
+ iθ

)
+k′

(
− log

a

b
+ iθ

)]
+ a2(a2 −b2)

2�
M(θ).

Inserting k(z)=n′(z) and θ =−iz into the above equation yields

h′(z)= (1+µ)a2

�

[
n′
(
z+ log

a

b

)
−n′

(
z− log

a

b

)]

+2a2

�

[
n′′
(
z+ log

a

b

)
+n′′

(
z− log

a

b

)]
+ a2(a2 −b2)

2�
M(−iz).

Integrating the above equation yields

h(z)= (1+µ)a2

�

[
n
(
z+ log

a

b

)
−n

(
z− log

a

b

)]

+2a2

�

[
n′
(
z+ log

a

b

)
+n′

(
z− log

a

b

)]
+ a2(a2 −b2)

2�

∫ z

0
M(−iv)dv.

The above equation and (18) imply that Lemma 2 holds.
Substituting n(z)=∑∞

n=−∞ anenz in (38) and simplifying yields

w(r, θ)=w2(r, θ)+
∞∑

n=2

ψn(r)(An cosnθ +Bn sinnθ), (40)

where An=an+a−n and Bn= i(an−a−n), and

ψn(r)= n(r2 −a2)

b2 −a2

[( r
b

)n−
(
b

r

)n]

+ a2(r2−b2)

�(a2 −b2)
(2n+1+µ)

[( r
b

)n−
(
a2

br

)n]
+a

2
(
r2 −b2

)

�(a2 −b2)
(2n−1−µ)

[(
br

a2

)n
−
(
b

r

)n]
.
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It is clear that the latter part in (38)

wh(r, θ)= r2 −a2

b2 −a2

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+2a2(r2 −b2)

�(a2 −b2)

[
n′
(

log
r

b
+ iθ

)
−n′

(
− log

r

b
+ iθ

)]

+2a2(r2 −b2)

�(a2 −b2)

[
n′
(

log
br

a2
+ iθ

)
−n′

(
− log

br

a2
+ iθ

)]

+ (1+µ)a2(r2 −b2)

�(a2 −b2)

[
n(log

r

b
+ iθ)+n

(
− log

r

b
+ iθ

)]

− (1+µ)a2(r2 −b2)

�(a2 −b2)

[
n(log

br

a2
+ iθ)+n

(
− log

br

a2
+ iθ

)]
(41)

is a solution of the homogeneous equation �4w=0 satisfying the following boundary condi-
tions

w(a, θ)=0

[
∂2w

∂r2
+µ

(
1
r

∂w

∂r
+ 1
r2

∂2w

∂θ2

)]∣∣∣∣∣
r=a

=0 w(b, θ)=0. (42)

Similar to Section 2, substituting n(z)= �(b2−a2)
4 z2 in (42), we get

wh0 (r, θ)=�(r2 −a2) log
r

b
−a2

[
4+2(1+µ) log

a

b

](
r2 −b2

)
log

r

a
=ψ0(r),

which implies that w00(r, θ)=A0ψ0(r) is a solution of the homogeneous equation �4w= 0
satisfying the boundary (42), where A0 is an arbitrary constant. Again similar to Section 2,
we can also find that w01(r, θ)=ψ1(r)(A1 cos θ +B1 sin θ) is a solution of the homogeneous
equation �4w=0 satisfying the boundary conditions (42), where A1 and B1 are two arbitrary
constants and

ψ1(r)=− (1+µ)(r2 −a2)(r2 −b2)

�r
+2

{
r log

r

b
+ (r2 −b2)

[
(3+µ)a4 + (1−µ)b2r2

]

�(a2 −b2)r
log

b

a

}
.

By the principle of superposition, the following function, viz.

w(r, θ)=w2(r, θ)+A0ψ0(r)+ψ1(r)(A1 cos θ +B1 sin θ)

+
∞∑

n=2

ϕn(r)(An cosnθ +Bn sinnθ), (43)

is a solution of (1) satisfying the boundary conditions (39).
Using (43), it is not hard to prove the following Theorem.

Theorem 3. (Two boundaries are simply supported) The solution of the following ring-plate
problem

�4w=p(r, θ) w(a, θ)=S0(θ),

[
∂2w

∂r2
+µ

(
1
r

∂w

∂r
+ 1
r2

∂2w

∂θ2

)]∣∣∣∣∣
r=a

=M0(θ), (44)

w(b, θ)= S̄0(θ)

[
∂2w

∂r2
+µ

(
1
r

∂w

∂r
+ 1
r2

∂2w

∂θ2

)]∣∣∣∣∣
r=b

= M̄0(θ)
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is given by

w(r, θ)=w2(r, θ)+A0ψ0(r)+ψ1(r)(A1 cos θ +B1 sin θ)+
∞∑

n=2

ψn(r)(An cosnθ +Bn sinnθ),

where

A0 = b

2π
[
bψ ′′

0 (b)+µψ ′
0(b)

]
∫ 2π

0
M̄(θ)dθ, A1 = b

π
[
bψ ′′

1 (b)+µψ ′
1(b)

]
∫ 2π

0
M̄(θ) cos θdθ,

B1 = b

π
[
bψ ′′

1 (b)+µψ ′
1(b)

]
∫ 2π

0
M̄(θ) sin θdθ, An= b

π
[
bψ ′′

n (b)+µψ ′
n(b)

]
∫ 2π

0
M̄(θ) cosnθdθ,

Bn= b

π
[
bψ ′′

n (b)+µψ ′
n(b)
]
∫ 2π

0
M̄(θ) sinnθdθ, M̄(θ)=M̄0(θ)−

[
∂2w2

∂r2
+µ

(
1
r

∂w2

∂r
+ 1
r2

∂2w2

∂θ2

)]∣∣∣∣
r=b
.

3.1. Example 4

Consider the bending of a uniformly loaded ring-plate, with bending moments m1 acting
around the curved edge r=a, and bending moments m2 acting around the curved edge r=b.
In this case, we have q(r, θ)=q0, S0(θ)= S̄0(θ)=0, M0(θ)=m1, M̄0(θ)=m2. Using the Exam-
ple 1, we find

w1(r, θ)=A(r2 −a2)(r2 −b2).

A straightforward computation shows that

M(θ)=M0(θ)−
[
∂2w1

∂r2
+µ

(
1
r

∂w1

∂r
+ 1
r2

∂2w1

∂θ2

)]∣∣∣∣∣
r=a

=m1 −2A
[
�+2(2a2 −b2)

]
.

Thus, we have

w2(r, θ)=w1(r, θ)+ a2(r2 −b2)

2�
Re

[∫ log r
a
+iθ

− log r
a
+iθ

M(−iv)dv

]

=A(r2 −b2)
(
r2 −a2 +K1 log

r

a

)
,

where K1 = {m1−2A[�+2(2a2−b2)]}a2

�
. Noting

M̄(θ)= M̄0(θ)−
[
∂2w2

∂r2
+µ

(
1
r

∂w2

∂r
+ 1
r2

∂2w2

∂θ2

)]∣∣∣∣∣
r=b

=m2 −2Aδ0,

where δ0 = (1+µ)(b2 −a2)+4b2 +2K1 + (1+µ)K1 log b
a

, by the Theorem 3, we get

A0 = b(m2 −2Aδ0)

bψ ′′
0 (b)+µψ ′

0(b)
An=Bn=0(n≥1).

Thus, the solution of the boundary-value problem is given by

w(r, θ)=w2(r, θ)+A0ψ0(r).

For the following four numerical examples (Figures 1–4), the following parameters have been
used: a= 2, b= 1, µ= 0·5, A= 0·05, m1 =Am̄1, m2 =Am̄2, m̄1 = m̄2 = 0 in Figure 1, m̄1 = 10
and m̄2 =0 in Figure 2, m̄1 =10 and m̄2 =−6 in Figure 3, m̄1 =−20 and m̄2 =0 in Figure 4.
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Figure 1. Figure 2.

Figure 3. Figure 4.

3.2. Example 5

Consider the bending of a ring plate subjected to a linear varying load and simply supported
around two curved boundaries. In this case, we have q(r, θ)= q0

a
r cos θ and S0(θ)= S̄0(θ)=

M0(θ)= M̄0(θ)= 0. Similar to the Example 4, a straightforward computation shows that the
solution of the boundary-value problem is given by

w(r, θ)=w2(r, θ)+A1ψ1(r) cos θ,

where

w2(r, θ)= B

2r
(r2 −a2)(r2 −b2)

(
2r2 +a2 +b2 −M0

�

)
cos θ,

A1 = BbM̄0

bψ ′′
1 (b)+µψ ′

1(b)
,

M0 = (b2 −a2)
[
(1−µ)b2 − (1+3µ)a2

]
−16a4,

M̄0 = 1−µ
b

(b2 −a2)

(
a2 +3b2 −M0

�

)
−2b

(
9b2 −a2 − 2M0

�

)
.
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4. Conclusions

This paper presents a new method of constructing the solutions of ring-plate problems. The
method can be described as follows. First, based on the general solution formula of the bihar-
monic equation (2), the general solution of the ring-plate problem is written in the form (3).
Second, by (3) and solving three simple functional equations, the solution of the ring-plate
boundary-value problem is represented in terms of a single function upon satisfaction of three
boundary conditions. Third, in order to satisfy the fourth boundary condition, the single arbi-
trary function is decomposed into a Fourier series. Finally, by the fourth boundary condition
and the Fourier-series expression of the solution, the Fourier coefficients are determined.

By this method, we have found a simpler solution formulae for ring-plate problems in the
following three cases: (1) two boundaries are built-in; (2) a boundary is built-in and another
is simply supported; (3) two boundaries are simply supported. Five examples have been given
and four numerical solutions were provided.

There are three advantages to using the method of constructing the solution of boundary-
value problems for the ring-plate geometry. First, we can construct directly the solution by
the solution formulae. Second, the form of the solution obtained by the method is simpler
than obtained by the classical Fourier-series method. Finally, we do not have to solve eight
complex linear algebraic equations.

The method can also be used to solve boundary-value problems for the ring plate with a
free boundary and some interesting mixed boundary-value problems, for example, ring plates
supported at several points around two curved boundaries. The author succeeded in con-
structing exact solutions of the semicircular-plate problems which are built-in along the diam-
eter edge by the method presented in the paper. The result will be given in a forthcoming
paper. An interesting open problem is whether or not the solutions of all sectorial-plate prob-
lems can be constructed by the present method.
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